首页> 外文OA文献 >Correspondence Between One- and Two-Equation Models for Solute Transport in Two-Region Heterogeneous Porous Media
【2h】

Correspondence Between One- and Two-Equation Models for Solute Transport in Two-Region Heterogeneous Porous Media

机译:一维和两方程模型在两区非均质多孔介质中溶质运移的对应关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, we study the transient behavior of homogenized models for solute transport in two-region porous media. We focus on the following three models: (1) a time non-local, two-equation model (2eq-nlt). This model does not rely on time constraints and, therefore, is particularly useful in the short-time regime, when the timescale of interest (t) is smaller than the characteristic time (τ 1) for the relaxation of the effective macroscale parameters (i. e., when t ≤ τ 1); (2) a time local, two-equation model (2eq). This model can be adopted when (t) is significantly larger than (τ 1) (i.e., when t≫τ 1); and (3) a one-equation, time-asymptotic formulation (1eq ∞). This model can be adopted when (t) is significantly larger than the timescale (τ 2) associated with exchange processes between the two regions (i. e., when t≫τ 2). In order to obtain insight into this transient behavior, we combine a theoretical approach based on the analysis of spatial moments with numerical and analytical results in several simple cases. The main result of this paper is to show that there is only a weak asymptotic convergence of the solution of (2eq) towards the solution of (1eq ∞) in terms of standardized moments but, interestingly, not in terms of centered moments. The physical interpretation of this result is that deviations from the Fickian situation persist in the limit of long times but that the spreading of the solute is eventually dominating these higher order effects. © 2012 Springer Science+Business Media B.V.
机译:在这项工作中,我们研究了均质模型在两区域多孔介质中溶质运移的瞬态行为。我们关注以下三个模型:(1)时间非局部二方程模型(2eq-nlt)。该模型不依赖于时间约束,因此,在感兴趣的时间尺度(t)小于特征时间(τ1)时,在短期时间范围内,对于放松有效的宏尺度参数(即,当t≤τ1)时; (2)时间局部两方程模型(2eq)。当(t)明显大于(τ1)时(即t≫τ 1时),可以采用该模型; (3)单方程时间渐近公式(1eq∞)。当(t)显着大于与两个区域之间的交换过程相关的时间标度(τ2)时(即,当t≫τ 2时),可以采用该模型。为了深入了解这种瞬态行为,我们在几种简单情况下将基于空间矩分析的理论方法与数值和分析结果相结合。本文的主要结果是,从标准矩来看,(2eq)解向(1eq∞)解只有弱渐近收敛性,有趣的是,没有中心矩矩。此结果的物理解释是,与Fickian情况的偏差会长时间持续存在,但溶质的扩散最终将主导这些高阶效应。 ©2012 Springer Science + Business Media B.V.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号